Online Platforms and the Fair Exposure Problem Under Homophily Jakob Schoeffer^{1,*}, Alexander Ritchie^{2,*}, Keziah Naggita^{3,*}, Faidra Monachou^{4,*}, Jessica Finocchiaro^{5,*}, Marc Juarez⁶ ¹Karlsruhe Institute of Technology, Germany ²University of Michigan, USA ³Toyota Technological Institute at Chicago, USA ⁴Stanford University, USA ⁵University of Colorado Boulder, USA ⁶University of Southern California, USA ^{*}Equal contribution, listed in reverse-alphabetical order # Online Platforms and the Fair Exposure Problem Under Homophily Jakob Schoeffer (jakob.schoeffer@kit.edu), Alexander Ritchie (aritch@umich.edu), Keziah Naggita (knaggita@ttic.edu), Faidra Monachou (monachou@stanford.edu), Jessica Finocchiaro (jessica.finocchiaro@colorado.edu), Marc Juarez (marc.juarez@usc.edu) #### Overview - Motivation: Political extremism, polarization in (social media) networks - Introducing the fair exposure problem: Given limited intervention power of the platform, goal is to enforce balance in the spread of content (e.g., news articles) among two groups of users. #### **Main Contributions** - 1. We initiate the fair exposure problem. - 2. Provide a novel and simple **framework** to study it plus emerging fairness questions in platforms. - 3. We show that introducing fairness constraints does **not** automatically imply truly fair outcomes. #### Model | M | Finite mass of users | |---------------------------|--| | $g \in \{A,B\}$ | Group affiliation | | π_q | Fraction of users in group g | | π_{g} $s \in \{a,b\}$ | Article source affiliated with A,B | | $t \in \{1, \ldots, T\}$ | Discrete time | | $ heta_{g,s}$ | Fraction of users g shown s at $t=1$ | | $p_{g,s}$ | Prob. of user g liking article s | | | (with A (B) liking a (b) more) | | $C_{g,s}$ | Cost for reading article | | $V_{g,s}$ | Valuation for liking read article | | $q_{\alpha} \in (0.5, 1)$ | Intra-group user replacement | • At time t > 0, each user sees an article and decides whether to **click or not**. Users click iff $$V_{g,s}p_{g,s} \geq c_{g,s}$$. • At t+1, users are **replaced** by same-group users (prob. q_g) or users from the other group $(1-q_g)$. If user at t liked article, then replacing user sees the same article—otherwise nothing. **Fig.** Exempl. article sharing over time for T = 6. #### **Fairness Constraints** Let $l_{g,s}$ (t) be the **mass** of users at time t belonging to group g who clicked and liked article s. Constant fair exposure ($e \in [0, 1]$): $$\frac{l_{A,s}(t)}{\pi_A} = \frac{l_{B,s'}(t)}{\pi_B} = e \quad \forall t \le T, \ \forall s, s' \in \{a,b\}, s \ne s'$$ Approx. fair average exposure ($\underline{\delta} < 1 < \overline{\delta}$): $$\underline{\delta} \leq \frac{\sum_{t=1}^{T} l_{A,a}(t)}{\sum_{t=1}^{T} l_{B,b}(t)} \leq \overline{\delta} \quad \text{and} \quad \underline{\delta} \leq \frac{\sum_{t=1}^{T} l_{A,b}(t)}{\sum_{t=1}^{T} l_{B,a}(t)} \leq \overline{\delta}.$$ - The mass $I_{g,s}(t)$ is a strictly increasing linear function of $\theta_{g,s}$ and $\theta_{g',s}$, except at time t=1. - We give a non-recursive expression for $I_{g,s}(t)$ using the one-sided \mathcal{Z} -transform. # Platform Optimization Problem (LP) (with approx. fair average exposure constraints (C1) and (C2)) $$\max_{\theta_{A,a},\theta_{B,a} \in [0,1]} \sum_{t=1}^{T} \sum_{g \in \{A,B\}} \sum_{s \in \{a,b\}} l_{g,s}(t)$$ $$\text{s.t. } \underline{\delta} \leq \frac{\sum_{t=1}^{T} l_{A,a}(t)}{\sum_{t=1}^{T} l_{B,b}(t)} \leq \overline{\delta} \qquad \text{(C1)}$$ $$\underline{\delta} \leq \frac{\sum_{t=1}^{T} l_{A,b}(t)}{\sum_{t=1}^{T} l_{B,b}(t)} \leq \overline{\delta}. \qquad \text{(C2)}$$ #### **Theoretical Results (Excerpt)** **Proposition** (informal): The exclusion of any fairness constraints in LP always results in all users of the same group being shown the same article by the platform at t = 1. Lemma (informal): It is generally not possible to achieve constant fair exposure at every time step unless certain restrictive conditions hold. ## Main Takeaways - From analyzing the optimal solutions to (LP) with (C1) and (C2), we know that introducing fairness constraints does **not** automatically imply that the outcome is truly fair/ balanced. - Specifically, it can happen that one group is being targeted with only one article (which may not be the group's preferred); whereas the other group sees both articles at unequal rates—thus incurring the "price of fairness." ## Results from Simulations (Excerpt) We also use our model to empirically study the effects of different model parameters from real-world click data (e.g., Bakshy et al., 2015). **Fig.** Calculating $\theta_{g,s}$ and $\theta_{g,s}$ as a function of fairness bounds δ . Questions? -> Please reach out!